Total Synthesis of a Ring-C-aromatic 18-Nor-steroid

By A. CHATTERJEE* and B. G. HAZRA

(Department of Chemistry, Jadavpur University, Calcutta-32, India)

Summary The total synthesis of 11-methoxy-18-nor-5α-androsta-8(9),11,13(14)-triene-3,17-dione is reported

In view of the recent interest 1 in c-ring-aromatic steroids, we report our work on the total synthesis of such a compound

MeO

MeO

(CH₂)₂·CO₂H

(II)

(II)
$$R^1 = R^2 = H$$

(III) $R^1 = Me$, $R^2 = H$

(IV) $R^1 = R^2 = Me$

(CH₂)₂·CO₂R

MeO

(CH₂)₂·CO₂R

MeO

(CH₂)₂·CO₂R

MeO

(CH₂)₂·CO₂R

MeO

(CH₂)₂·CO₂R

(CH₂)₂·CO₂R

(CH₂)₂·CO₂R

(CH₂)₂·CO₂R

Reduction† of the known acid (I)² with sodium and alcohol in liquid ammonia, followed by mild acid hydrolysis, furnished a mixture of products. Chromatography of this mixture afforded the crystalline acid‡ (II) (64%), m p $126-127^{\circ}$, λ_{max} 275 and 283 nm (ϵ 1995 and 1963), ν_{max} 1712 cm $^{-1}$, τ (CDCl $_3$) 6 77–7 57 (8H), 6 45 (2H, s), 6 22 (3H, s), and 3 12 (2H, q, J 8 Hz). The keto-acid (II)

furnished a methyl ester (III), m p 84°, $\lambda_{\rm max}$ 276 and 283 nm (ϵ 1905 and 1928), $\nu_{\rm max}$ 1720 cm⁻¹, τ (CDCl₃) 6 81—7·57 (8H), 6 46 (2H, s), 6 32 (3H, s), 6 20 (3H, s), and 3 17 (2H, q, J 8 6 Hz) The enamine, m p 98—99°, $\nu_{\rm max}$ 1728, 1611, and 1568 cm⁻¹, prepared from (III) was alkylated with methyl iodide in methanolic solution. The alkylated product, obtained as a liquid, was purified by evaporative distillation. The resulting homogeneous (t 1 c and column chromatography) product provided a crystalline semicarbazone (91%), m p 203—204°. The structure (IV) for this product is supported from its spectral characteristics $\lambda_{\rm max}$ 276 and 283 nm (ϵ 1905 and 1950), $\nu_{\rm max}$ (film) 1711 and 1733 cm⁻¹, τ (CCl₄) 8 74 (3H, d, J 7·5 Hz), 7 00—7 80 (9H), 6 41 (3H, s), 6 23 (3H, s), and 3 25 (2H, q, J 7 2 Hz)

The reaction of the keto-ester (IV) with the methiodide of 1-diethylaminobutan-3-one furnished a higher-boiling product which was characterised as (V) from elemental analyses and spectral properties, λ_{max} 229, 278, and 284 nm $(\epsilon 21,880, 3236, \text{ and } 3199), \nu_{\text{max}} 1715 \text{ and } 1660 \text{ cm}^{-1},$ τ (CCl₄) 8 32 (3H, s), 6 95—8 22 (12H), 6 37 (3H, s), 6 18 (3H, s), $4\ 32\ (1H, s)$, and $3\ 20\ (2H, q, J\ 8\ 4\ Hz)$, 2,4-dimitrophenylhydrazone, m p 182—183°, λ_{max} (CHCl₃) 390 nm $(\epsilon 34,040)$, semicarbazone, m.p. 239—240° Alkaline hydrolysis of (V) produced a noncrystalline acid, characterised as (VI) by its crystalline semicarbazone, m p 243—244° Birch reduction of (VI) followed by esterification (CH₂N₂) furnished the crystalline methyl ester (VII), mp 89°, $\lambda_{
m max}$ 275 and 282 nm (ϵ 1938 and 1945), $u_{
m max}$ 1723 and 1705 cm⁻¹ This ester, on alkaline hydrolysis, afforded the corresponding acid (VIII), m p 140°, λ_{max} 276 and 283 nm $(\epsilon \ 1823 \ \text{and} \ 1833), \ v_{\text{max}} \ 1705 \ \text{cm}^{-1} \ (\text{broad})$ The transstructure (VIII) for the acid is assigned by analogy with the well-known stereochemical course of the Birch reduc-Polyphosphoric acid cyclisation of (VIII) furnished in excellent yield the crystalline c-aromatic compound (IX), m p $~172^{\circ},~\lambda_{max}~264$ and $319~\text{nm}~(\epsilon~15,490~\text{and}~6542)\text{,}$ v_{max} 1704 cm⁻¹ (broad)

As far as we know, this is the first synthesis of a ring-caromatic steroid with an angular methyl group at C-10 and an oxygen function at C-11

[†] The reaction conditions for this reduction are critical, slight change in the conditions produces β -(1,2 3 4-tetrahydro 8-methoxy-5-naphthyl) propionic acid as the main product of the reduction

[‡] All compounds described herein gave expected elemental analyses. Uv spectra were taken in ethanol solution, and ir spectra were measured in chloroform solution unless otherwise stated

The structure recently established³ for the mould metabolite, viridin, is the first naturally occurring c-aromatic

We thank C.S.I.R., New Delhi, for a Research Fellowship (to B.G.H.), and Dr. M. M. Dhar for n.m.r. spectra.

(Received, March 17th, 1970; Com. 380.

¹C. F. Hammer, D. S. Savage, J. B. Thomson, and R. Stevenson, *Tetrahedron*, 1964, 20, 929; D. Levy and R. Stevenson, *Tetrahedron Letters*, 1966, 3063; A. J. Birch and G. S. R. Subba Rao, *ibid.*, 1967, 857; T. B. Windholz, B. Arison, R. D. Brown, and A. A. Patchett, ibid., p. 3331.
 A. Chatterjee and B. G. Hazra, Tetrahedron Letters, 1969, 73.
 J. F. Grove, J. Chem. Soc. (C), 1969, 549, and references cited therein.